CLASS - 10th to 11th

Section - I MATHEMATICS

1.	$2022^3 - 2021 \times 2022 \times 2023 = $				
	(a) 2021	(b) 2022			
	(c) 1	(d) 0			
2.	Real numbers a , b , c satisfying the equations a +	$b+c=26$ and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=28$ then the value of			
	$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} + \frac{a}{c} + \frac{c}{b} + \frac{b}{a} =$				
	(a) 746	(b) 625			
	(c) 728	(d) 725			
3.	Given 3 different prime numbers p,q,r such that	$p+q+r\!=\!100$ and $p\!<\!q\!<\!r$. If r is the largest possible value			
	then the value of $(-1)^{p-1}(p-1)+(-1)^q(q)+(-1)^{r+1}(r+1)$ is				
	(a) 77	(b) 60			
	(c) 82	(d) 75			
4. If $a^b = 125$, where a & b are prime, then the value of $(a - b)^{a+b-4}$ is					
	(a) 16	(b) 18			
	(c) 25	(d) 9			
5. If A $(-2, -1)$, B(a, 0), C(4, b) and D(1, 2) are the vertices of a parallelogram, then $a + b =$					
	(a) 2	(b) – 2			
	(c) 4	(d) – 4			
6.					
	(a) 0	(b) 1			
	(c) 9	(d) 3			
7.	If 3, 5, x are the sides of an integer sided obtuse angle triangle, the number of such triangles is				
	(a) 0	(b) 3			
	(c) 4	(d) infinite			
8. If $f(x)=x^4+x^3+x^2+x+1$, then the remainder when $f(x^{11})$ is divided by $f(x)$ is					
	(a) 0	(b) <i>x</i>			
	(c) $x + 1$	(d) $x^2 + 2x + 1$			
9.	If $\left(x + \frac{1}{x}\right) = 3$, then $\left(x^5 + \frac{1}{x^5}\right)$ is equal to				
	(a) 192	(b) 198			
	(c) 195	(d) 243			

CLASS - 10th to 11th

10. In $\triangle ABC$, BC = a, CA = b, AB = c. and h_a , h_b , h_c are the heights from A, B, C to the opposite sides BC, CA, AB respectively. If $\frac{2}{h_b} = \frac{1}{h_a} + \frac{1}{h_c}$ then the value of $\frac{(a-b)^2 + (b-c)^2}{(a-c)^2}$ is

(a) 1

(b) $\frac{1}{2}$

(c) 2

(d) $\frac{1}{4}$

Section - II

PHYSICS

11. Equivalent resistance between *A* and *B* will be –

- (a) 2 ohm
- (c) 6 ohm

- (b) 18 ohm
- (d) 3.6 ohm
- 12. The effective resistance between the points *A* and *B* in the figure is –

(a) 5Ω

(b) 2 Ω

(c) 3 Ω

(d) 4Ω

13. Four resistances are connected in a circuit in the given figure. The electric current flowing through 4 *ohm* and 6 *ohm* resistance is respectively –

(a) 2 amp and 4 amp

(b) 3 amp and 2 amp

(c) 1 amp and 1 amp

(d) 2 amp and 2 amp

CLASS - 10th to 11th

14.	An electric lamp is marked 60 W, 230 V. The cost	of a $1 kWh$ of energy is $Rs.~1.25$. The cost of using this lamp			
	8 <i>hrs</i> a day for 30 day is				
	(a) Rs. 10	(b) Rs. 16			

15. A concave mirror is used to focus the image of a flower on a nearby well 120 cm from the flower. If a lateral magnification of 16 is desired, the distance of the flower from the mirror should be –

(d) Rs. 20

(a) 8 cm (b) 12 cm (c) 80 cm (d) 120 cm

(c) Rs. 18

- 16. Radius of curvature of concave mirror is 40 cm and the size of image is twice as that of object, then the object distance is _____.
 - (a) 60 cm (b) 20 cm (c) 40 cm (d) 30 cm
- 17. A point object is placed at a distance of 30 *cm* from a convex mirror of focal length 30*cm*. The image will form at
 - (a) Infinity (b) Focus (c) Pole (d) f/2
- 18. A person sees his virtual image by holding a mirror very close to the face. When he moves the mirror away from his face, the image becomes inverted. What type of mirror he is using?
 - (a) Plane mirror
 (b) Convex mirror
 (c) Concave mirror
 (d) None of these
- 19. Two lenses are placed in contact with each other and the focal length of combination is $80 \, cm$. If the focal length of one is $20 \, cm$, then the power of the other will be
 - (a) 1.66 D (b) 4.00 D
- (c) -1.00 D (d) -3.75 D
- 20. The ray diagram could be correct –

 (a) If $n_1 = n_2 = n_g$ (b) If $n_1 = n_2$ and $n_1 < n_g$
 - (d) Under no circumstances

(c) If $n_1 = n_2$ and $n_1 > n_a$

Section - III CHEMISTRY

- 21. Which of the following is not a combination reaction?
 - (a) $C+O_2 \longrightarrow CO_2$ (b) $H_2+O_2 \longrightarrow H_2O$
 - (c) $CH_4 + O_2 \longrightarrow CO_2 + H_2O$ (d) All of these
- 22. Which will be an endothermic reaction?
 - (a) $N_2 + 3H_2 \longrightarrow 2NH_3$ (b) $CaO + CO_2 \longrightarrow CaCO_3$

CLASS - 10th to 11th

(c)	SO_3	\longrightarrow SO ₂ +	0
(-)	3	· Z	- 4

(d)
$$H_2 + O_2 \longrightarrow H_2O$$

- 23. Zinc sulphide heating with Aluminum phosphide gives zinc phosphide and aluminium sulphide. On balancing this reaction, the coefficient of Zinc sulphide and Aluminum phosphide, will be in the ratio
 - (a) 1:1

(b) 2:1

(c) 3:2

- (d) 2:3
- 24. $FeC_2O_4 + KMnO_4 + H_2SO_4 \longrightarrow Fe_2(SO_4)_3 + K_2SO_4 + MnSO_4 + CO_2 + H_2O_4 + KMnO_4 + KMNO_4$

On balancing this reaction, with smallest possible whole numbers, the coefficient of CO₂ will be

(a) 2

(b) 12

(c) 24

- (d) 20
- 25. $SO_2 + O_2 \longrightarrow SO_3$ In the above reaction
 - (a) Sulphur is oxidised

(b) Oxygen is oxidised

(c) Oxygen is reduced

- (d) Both (a) and (c)
- 26. $Fe_2O_3 + Cr \longrightarrow Cr_2O_3 + Fe$ in the above reaction, reducing agent is
 - (a) Iron

(b) Chromium

(c) Oxygen

- (d) It is not a redox reaction
- 27. Which of the following reaction will change the color of the solution to colourless?
 - (a) $CuSO_4 + Fe$

(b) $FeSO_4 + Cu$

(c) $CuSO_4 + Zn$

- (d) $FeSO_4 + Ag$
- 28. Which among the following metals has as the least oxidising properties?
 - (a) Fe

(b) Zn

(c) Al

- (d) Cu
- 29. The solution which turns blue litmus to red may have a pOH of
 - (a) 13

(b) 7

(c)2

- (d) All of these
- 30. The acidic salt among the following is
 - (a) Na_2CO_3

(b) KHCO₃

(c) NaHSO₄

(d) NH₄NO₃

Section - IV

Aptitude

31. Find the missing number/letter.

4, 6, 9, $13\frac{1}{2}$,?

(a) $17\frac{1}{2}$

(b) 19

CLASS - 10th to 11th

(c) $20\frac{1}{4}$

(d) $22\frac{3}{4}$

32. Find the missing number/letter.

9360, 1560, 312, 78, 26, ?

(a) 4

(b) 13

(c) 2

(d) 5

33. Find the missing number/letter.

NOS, OQV, PSY, QUB, ?

(a) SWE

(b) RWE

(c) RVE

(d) RWF

34. Find the missing number/letter.

XLR, YKS, ZJT, AIU,?

(a) B H V

(b) C H V

(c) B I V

(d) BHW

35. Find the missing number/letter.

(a) LstsLtLs

(b) LtLtstLt

(c) LttLstLL

(d) LLLtstLt

36. Find the odd-numeral pair.

(a) 8 - 27

(b) 125 - 216

(c) 343 - 512

(d) 1009 - 1331

37. Find the odd-numeral pair.

(a) 72 - 45

(b) 51 - 24

(c) 47 - 20

(d) 32 - 13

38. Find the odd-numeral pair.

(a) 13 - 21

(b) 19 - 27

(c) 15 - 23

(d) 16 - 24

39. In a certain code language, STRING is written as % = *4+÷ and PRAISE as ?*@4%x How will the word GRAPES be written in that code language,?

(a) \div *@x?%

(b) ÷@*? x %

(c) \div *@ ?x%

(d) \div *-?x%

40. Analogy find the missing the number 20:11::102:?

(a) 49

(b) 52

(c) 61

(d) 98

CLASS - 10th to 11th

ANSWER

1. C									
11. D	12. B	13. D	14. C	15. A	16. D	17. D	18. C	19. D	20. C
21. C	22. C	23. C	24. D	25. D	26. B	27. C	28. C	29. A	30. D
31. C	32. B	33. B	34. A	35. C	36. D	37. D	38. D	39. C	40. B

RISE Office: Plot No 774, Flat B-4, Fourth Floor, Vignesh Sai Garden Flats, Munusamy Salai, KK Nagar, Chennai - 600078